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The flow induced by a vortex ring approaching a plane wall on a trajectory normal 
to the wall is investigated for an incompressible fluid which is otherwise stagnant. 
The detailed characteristics of the interaction of the ring with the flow near the 
surface have been observed experimentally for a wide variety of laminar rings, using 
dye in water to visualize the flow in the ring as well as near the plane surface. 
Numerical solutions are obtained for the trajectory of the ring as well as for the 
unsteady boundary-layer flow that develops on the wall. The experimental and 
theoretical results show that an unsteady separation develops in the boundary-layer 
flow, in the form of a secondary ring attached to the wall. A period of explosive 
boundary -layer growth then ensues and a strong viscous-inviscid interaction occurs 
in the form of the ejection of the secondary vortex ring from the boundary layer. 
The primary ring then interacts with the secondary ring and in some cases was 
observed to induce the formation of a third, tertiary, ring near the wall. The details 
of this process are investigated over a wide Reynolds number range. The results 
clearly show how one vortex ring can produce another, through an unsteady 
interaction with a viscous flow near the wall. 

1. Introduction 
Over the past fifteen years, there has been an increasing amount of research in flows 

associated with vortex motions. As experimental flow visualization methods and 
quantitative measurement techniques have improved, it has become increasingly 
apparent that vortex motions play an important role in the flow dynamics of such 
diverse situations as turbulent boundary-layer and turbulent wake flows, mixing 
layers, airfoils and the wakes of aircraft and turbine blades. The study of vortex 
motion is rather broad, and in recent times a variety of aspects have been reviewed 
by Saffman & Baker (1979) and Leonard (1980,1985). The present study is concerned 
with the nature of the flow near a solid wall which is induced by vortex motion, and 
consequently attention will be restricted here to such flows. 

In recent years, the recognition that vortex motions are an important feature in 
the dynamics of the turbulent boundary layer has led to an increasing interest in 
developing an Understanding of the types of flow induced by a moving vortex (see, 
for example, Acarlar & Smith 1984, 1987a, b ;  Doligalski & Walker 1984). One 
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dominant physical process in turbulent boundary layers is the bursting phenomenon ; 
in this event, violent and abrupt eruptions of fluid from the region near the wall are 
observed to occur intermittently at isolated spanwise and streamwise locations. It 
is in this way that new vorticity is continually introduced into the outer layer of the 
turbulent boundary layer from the near-wall region. Since this is the fundamental 
manner in which a turbulent boundary layer sustains itself, it is clearly of interest 
to understand the physical mechanisms which drive this regenerative process. In  an 
early experimental study by Nychas, Hershey & Brodkey (1973), it was suggested 
that bursting near the wall was somehow associated with the passage of what 
appeared to be a transverse vortex in the outer region of the boundary layer. Since 
that time, a number of investigators have sought to isolate the effects of a moving 
vortex in rather controlled situations. 

One of the first experimental investigations which showed that a moving vortex 
could induce eruptions from a boundary-layer flow near a wall, is due to Harvey & 
Perry (1971); their study was carried out to determine why aircraft trailing vortices 
were invariably observed to rebound from a ground plane, in apparent contradiction 
to the predictions of inviscid theory. A wing was mounted in the sidewall of a wind 
tunnel that had a moving floor in the test section in order to simulate the effects of 
an aircraft near the ground . A series of total head surveys indicated that the vortex 
trailing from the wingtip caused a boundary-layer separation in the form of a 
secondary eddy which was initially attached to the tunnel floor. At  successive stations 
downstream, an ejection of the secondary eddy from the boundary layer was 
observed; the viscous-inviscid interaction was so strong that the motion of the 
trailing vortex was arrested and a rebound occurred from the tunnel floor. The 
interpretations of Harvey 6 Perry (1971) were subsequently supported by Walker 
(1978) who computed the boundary-layer flow induced by a vortex of positive 
rotation above a plane wall in an otherwise stagnant fluid. Inviscid theory predicts 
that such a vortex will move at constant speed on a trajectory parallel to the wall. 
However, a region of adverse pressure gradient is induced on the boundary-layer flow 
near the wall in front of the moving vortex ; separation occurs soon after the initiation 
of the motion, in the form of a secondary eddy which is of opposite rotation to the 
primary vortex. The numerical solutions ultimately exhibited strong and apparently 
explosive boundary-layer growth near the secondary eddy and suggest that the 
boundary-layer solution was rapidly evolving toward a strong viscous-inviscid 
interaction with the outer flow. Rational methods to compute such strong interactions 
are not yet available but the results of Walker (1978) and Harvey & Perry (1971) 
confirm that the outcome of the process is a boundary-layer eruption and the ejection 
of a secondary vortex. 

In  subsequent studies, Doligalski, Smith & Walker (1980) and Doligalski & Walker 
(1984) have investigated the boundary layer due to a vortex of negative rotation 
which is convected to the right in a shear flow and a uniform flow respectively. In  
such situations, a region of adverse pressure gradient occurs behind the moving 
vortex near the wall. Numerical solutions for the boundary-layer development near 
the wall showed that separation usually occurred in the form of a detached secondary 
eddy; in all cases the onset of explosive boundary-layer growth was ultimately 
observed. Similar behaviour has been observed by Ersoy & Walker (1985a, b)  who 
studied the boundary-layer effects due to a rectilinear vortex pair near a wall. In all 
of these studies, a variety of complex and unusual separation effects are produced 
in the boundary-layer flow by the moving vortices. However, the one common thread 
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is the following : once a two-dimensional vortex is close enough to a wall for a sufficient 
period of time, boundary-layer separation and explosive boundary-layer growth are 
apparently inevitable. This boundary-layer growth is expected to lead to strong 
viscous-inviscid interaction in the form of a boundary-layer eruption and the 
evolution of secondary vortices. 

One aspect which is normally considered important in the time-dependent motion 
in a turbulent boundary layer is vortex stretching; however, the previously cited 
theoretical studies of vortex-induced boundary-layer flows lack this feature, since 
they are purely two-dimensional flows. Perhaps the most fundamental flow which 
incorporates vortex stretching is that due to a vortex ring approaching a plane wall 
in an otherwise stagnant fluid, and this flow is the subject of the present study. When 
the trajectory of a vortex ring is initially normal to the wall, the inviscid problem 
can be considered to consist of two vortex rings of opposite circulation approaching 
one another along a common axis. This mathematical problem was originally 
considered by Helmholtz (1867) (see also Lamb 1932) who showed that ideal-fluid 
theory predicts that as a ring approaches the wall, its rate of approach slows and 
the ring diameter continually increases. As the ring diameter expands, the vortex 
stretches and the cross-sectional area of the vortex core decreases. 

The predictions of ideal-fluid theory are not fully realized in the laboratory. Over 
the years, there has been a variety of flow visualization studies of the effects of a 
vortex ring moving in a direction normal to a solid surface (Magarvey & MacLatchey 
1964; Boldes & Ferreri 1973; Schneider 1978a, b ;  Yamada & Matsui 1980). These 
studies have been critically reviewed by Cerra & Smith (1983). By and large, all 
authors found that once the vortex ring approached the wall, there was a significant 
departure from the trajectory predicted by inviscid theory in the sense that the ring 
was always observed to rebound from the wall. In  most cases, a second vortex ring 
was observed to form in the boundary layer on the wall, with the secondary ring 
having a circulation of the opposite sense to that of the primary ring. The secondary 
ring was observed to be subsequently ejected from the boundary layer and then to 
interact with the original ring. 

In the present paper, the results of a combined theoretical and experimental study 
of the effects of a vortex ring impacting a solid surface will be described. In  $2, the 
inviscid solution for a ring approaching a wall is described; the formulation of the 
boundary-layer problem near the wall is described in $3. The actual solutions 
computed are tied to the experimental cases considered ; the experimental apparatus 
is described in $4 and the detailed flow-visualization results are discussed in $5.  
Numerical results for the ring trajectories are compared with experiment in $6. The 
numerical method for the computation of the boundary-layer flow is described in $7 
and calculated results are discussed and compared with experiment in $8. A 
discussion of results follows in $9. 

2. The inviscid flow 
Consider the inviscid flow produced by a circular vortex ring which approaches a 

plane impermeable wall in an otherwise unbounded incompressible flow. If all 
locations on the centre of the ring core are initially equidistant from the wall, the 
flow is axisymmetric about a normal through the plane of the ring and will remain 
so for all time t * .  The important geometrical details of the ring are sketched in figure 
1. The major radius of the ring R*(t*) and the core radius a*(t) are functions of time, 
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FIGURE 1. Schematic sketch of the geometry for a circular vortex ring approaching 
a plane wall. 

and change as the ring moves toward the wall; at any stage, all points at  the centre 
of the ring core are located a distance Y*(t*) from the plane wall. In addition the 
ring is taken to have a constant circulation r, as shown in figure 1. To describe the 
problem mathematically, cylindrical coordinates (r*, 8,  y*) are adopted, with origin 
in the flat plate and on the symmetry axis of the ring ; the corresponding velocity 
components are (u:, 0, u:), since the azimuthal velocity component is taken to be 
zero. At t* = 0, it is assumed that the ring is located a t  r* = R,* and y* = Y,*. It is 
evident that both R; and Y; are important in the description of this problem and 
a representative length L may be defined according to 

L = (Rp+ Y,*"i, ( 1 )  
corresponding to the initial distance of the centre of the core from the origin. A set 
of dimensionless variables (without the asterisk) may be defined using L and T / L  
as the representative length and velocity respectively, and it is convenient to 
introduce an axisymmetric streamfunction $(r ,  y, t )  defined by 

The streamfunction corresponding to a circular ring of infinitesimal cross-section 
(a/R+O) in an unbounded fluid was first given by Helmholtz (1867) ; the inviscid flow 
due to a vortex ring approaching a wall is readily constructed from this solution 
and is 

( R 4  (Rr)i $(r ,  y, t )  = - ((2 - k2)  K (  k )  - 2E(K)} -- { ( 2  - z2) K ( z )  - 2E(%)}, 
2nk 27ck 

where 
- 4rR kz = 4Rr 

k2 = 
(y- Y)2+(r+R)2'  (y+ Y ) 2 + ( r + R ) 2 '  

(3) 

(4) 



Impact of a vortex ring on a wall 103 

0 1 .o 
r 

FIGURE 2. Instantaneous inviscid Streamlines for a vortex ring above a plane (Y = R = 1). 

and K and E are complete elliptic integrals of the first and second kinds defined by? 

f .  in 

K( k )  = (1 - k2 sin2 z)* dx, E( k )  = j (1 - ka sina x)i dx. 
0 0 

The streamfunction given by (3) describes the instantaneous inviscid flow due to a 
ring of radius R located a distance Y above the wall, and the instantaneous 
streamlines for a typical case ( Y  = 1.0, R = 1.0) are illustrated in figure 2. 

An isolated vortex ring in an unbounded fluid moves parallel to its own axis with 
nearly constant velocity. For the situation of interest in this paper, the primary 
vortex ring approaches its image in the wall; it  is evident that the velocity field 
induced by the image will act to slow the rate of approach to the wall and also to 
increase the radius of the primary ring. Consequently the lengths R and Y are 
functions of time to be determined. The velocity field of the primary ring consists 
of a self-induced component and a component induced by the image vortex, which 
will be denoted by subscripts s and i respectively. The velocity field induced by the 
image is readily obtained by considering the streamfunction due to the image, 
applying equations (2) and formally setting r = R, y = Y to obtain the image-induced 
field at the primary ring according to 

t There is some ambiguity in the definition of elliptic integrals in the literature, and throughout 
this paper, notation corresponding to Jahnke & Emde (1945) is used. 
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Here B(k) and D(k) are related to the complete elliptic integrals, and are defined by 
Jahnke & Emde (1945) according to 

In  these equations, k’ is defined by 
k’2 = 1 -k2 ,  

and in (6), le is evaluated a t  r = R, y = Y .  
The self-induced velocity of the vortex ring is not unique in general. A curved line 

vortex of infinitesimal cross-section will move locally with infinite speed; it is 
therefore necessary to  take into account the effect of a finite-size (but small) core 
radius and to  consider effects of the internal core structure in evaluating the 
self-induced velocity of the ring. The inviscid solution (3) is an outer solution which 
is valid a t  locations remote from the vortex core and which must be matched to an 
inner solution describing the distribution of vorticity within the core (Tung & Ting 
1967; Bliss 1970; Widnall, Bliss & Zalay 1971). For circular vortex rings with a 
uniform distribution of vorticity across a circular core, the self-induced velocity was 
first given by Thomson in an appendix to  a paper by Helmholtz (1867) ; this solution 
gives 

urs=0 ,  u = 
ys 4nR 

which is valid for a / R  4 1 .  The speed of propagation given in (9) may be interpreted 
as the leading term in an expansion in the parameter a / R .  The next term in the 
expansion has been given by Fraenkel (1972) and is O(a2 /R2) ;  for the vortex rings 
considered in this study, the second-order term may reasonably be neglected. Perhaps 
the simplest type of vortex ring corresponds to  the physical situation where the fluid 
in the vortex core is in a state of solid-body rotation and this type of vortex is known 
as a Kelvin-Hicks ring. Fraenkel (1972) has examined the conditions under which 
other core models for the ring vortex may exist. Examples of other types of core 
models have been discussed by Hicks (1884), Saffman (1970) and Bliss (1970). I n  
principle, any distribution of swirl and axial velocity is possible within the vortex 
core subject to  the restrictions 

- r r 
v = O a t - = ~ ,  V=O(:) as-+co. 

a a 

Here ( r /a)  measures dimensionless radial distance from the centre of the vortex core 
and @ denotes the swirl velocity about the core. I n  (10) the last condition is necessary 
to match to the outer inviscid solution. Evidently a variety of swirl velocity 
distributions may be selected and the apparent indeterminacy is due to a lack of 
knowledge of the conditions present when the ring was created. The propagation 
velocity of the ring depends on integrals of the assumed distributions of swirl and 
axial velocity in the vortex core; however, the dependence is relatively weak and 
essentially only affects the constant term on the right-hand side of ( 9 b ) .  The 
Kelvin-Hicks ring appears to be a suitable model for the observed behaviour of the 
vortex rings observed experimentally in this study and consequently was used 
exclusively in the theoretical analysis. 

It is well known that a vortex line always consists of the same fluid particles and 
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FIGURE 3. Comparison of computed vortex ring trajectory with data. 

therefore moves with the fluid in an incompressible flow (see, for example, Milne- 
Thomson 1962 p. 84). Consequently the core of the Kelvin-Hicks ring under 
consideration must be of constant volume and it follows that 

R(t)a2(t)  = C,  (11)  

where C is a constant related to the initial volume of the core of the ring. Upon 
substitution in (9) ,  it  follows that 

The ring trajectory for a given initial major radius R, and height from the wall Yo 
may be obtained by solving the system 

These equations were solved numerically using a fourth-order RungeKutta inte- 
gration scheme performed with various sequences of increasingly small timesteps in 
order to ensure good accuracy. A typical trajectory is given in figure 3 which also 
includes data points from a trajectory of the present experiments; discussion of the 
data on this figure is deferred until $5. 

Once a numerical solution for the ring trajectory has been produced for given initial 
conditions, R(t) and Y(t) are known and the time-dependent inviscid velocity 
distribution induced by the moving ring near the wall may be evaluated. In  
particular, using (2)  and (3), the vertical and radial velocity components may be 
evaluated and formally letting y+O yields 

ur-2 Urn(?-, 0 ,  uy+o, (14) 
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where 

Evidently the inviscid solution is not uniformly valid. The radial component of 
velocity is reduced to  relative rest on the wall by an unsteady viscous boundary layer 
which is considered next. 

3. Boundary-layer formulation 

are defined: 

where the Reynolds number for the flow is defined according to Re = r / v ,  with v the 
kinematic viscosity. The equations governing the incompressible boundary-layer 

To describe the boundary-layer flow near the wall, the following scaled variables 

u = u,, v = uy Ref, yf  = y Ref, (16) 

flow are 
i a  av 
r ar a Y  
- - ( r u ) + y  = 0, 

-+u-+w,=-+u,---+- au au au au, au, a 2 u  

at ar ay at ar a Y f 2 )  

where t measures dimensionless time from the initial vortex configuration and U ,  
is the dimensionless inviscid radial velocity given by (15). The boundary conditions 
associated with ( 1  7 )  and (18) are 

u = v = 0 at y = 0, u+U,(r, t )  as y+m. (19) 

In  regard to the initial condition, it is assumed that at t = 0 the vortex ring is inserted 
abruptly into an otherwise stagnant fluid above the infinite plane wall at r = R,, 
y = Yo. This initial condition is an approximate representation of the experiments, 
which will subsequently be discussed, in which a vortex ring was abruptly created 
in the fluid. Upon introduction of the vortex ring, a thin viscous boundary layer 
begins to form on the wall; to describe the development of this layer mathematically 
i t  is convenient to introduce Rayleigh variables according to 

(20) 7 = 7 ,  Y f  $ = 2dRebrU, F(r ,  7, t ) ,  
2 t ~  

where $ is the streamfunction defined by (2). It is easily shown that (18) becomes 

The boundary conditions associated with ( 2 1 )  are 

aF aF 
F = - = O  a t 7 = 0 ,  -+1 asq+m 

a7 a7 
The initial condition for F may be obtained by letting t approach zero in ( 2 1 )  to obtain 

a3F a2F 
-+27- = 0,  
a73 a72 (23) 
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and the solution of (23) which satisfies conditions (22) is 

These equations provide the initial condition for the boundary-layer flow from which 
the solution of (21) develops forward in time. However, the formulation of the 
mathematical problem is not yet complete, since the solution at r = 0 and at upstream 
infinity develops independently of the solution for 0 < r < 00 ; it is therefore 
necessary to address each of these problems separately and this aspect is considered 
next. 

First consider the solution near r = 0. As r+O, ko+O, and in this limit the elliptic 
integrals in (15) may be expanded to show that 

3 YR2 
2( Ya+R2)$' 

U,+a(t)r+ ..., a(t) = 

Substitution of (25) into (21) and taking the limit as r+O results in 

-1-2Fo- a72 +-- a dt --1 1. a2F0] 4t 
(26) 

a7 
Here F o ( ~ ,  t )  is defined by 

Fo(q, t )  = lim F(r,  7, t ) .  
r+o 

The function 4 satisfies the boundary conditions (22) and has the same initial 
condition given by (24). In  (26), 

d Y  [ (R3 -4YaR) dt+ ( 2 P  - 3YR2) $1, da 3R 
dt - 2(Ya + R2)i 
-- 

and dY/dt and dR/dt are given by (13). The solution of (26) describes an unsteady- 
stagnation-point flow which develops independently of the rest of the boundary- 
layer solution. Equation (26) is a nonlinear equation for Fo(7, t )  and was solved 
numerically; discussion of the numerical solution is deferred until $7. 

Now consider the limit as r - f  00 for which k: - 4R/r. It may readily be shown that 
the inviscid radial velocity given by (15) behaves according to 

If the limit r+ co is formally taken in (21), it follows that the streamfunction satisfies 

where F1(7, t )  is defined by 

Fl(7, t )  = lim F(r, 7, t ) .  (31) 
I+, 

Again the function Fl satisfies the boundary conditions (22) and has the same initial 
condition as given by (24). In (30) 
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FIGURE 4. End-on view of water channel and traversing platform. 

where dY/dt and dR/dt are given by (13). The solution of (30) was obtained 
numerically and a discussion of the procedure is given in $7 .  

At this stage the formulation of the unsteady boundary-layer problem is complete. 
A wide variety of different cases could be considered corresponding to different initial 
locations of the vortex ring. However, since the computed cases were tied closely to 
the experiments, it  is useful a t  this stage to describe the experimental apparatus and 
results. 

4. Experimental apparatus 
The experiments reported in this study were carried out in the water-channel-flow 

facility located in the Fluid Dynamics Research Laboratory of Lehigh University. 
This flow facility is an open-surface water channel which is essentially the same as 
that described by Smith & Metzler (1983) but suitably adapted for the present study. 
Figure 4 illustrates the general arrangement of the vortex-ring generator, the video 
viewing equipment and the lighting. 

Single vortex rings were produced in a conventional way by ejecting slugs of fluid 
through a circular sharp-edged orifice. Upon ejection, the moving body of fluid rolled 
up into a vortex ring (or more precisely into the shape of an oblate spheroid) which 
subsequently descended toward a flat plate mounted above the floor of the channel. 
I n  the experiments described here the water in the channel was initially stagnant 
prior to the introduction of the vortex ring. 

The vortex-ring generator is shown schematically in figure 5 ;  i t  is powered by a 
0.044 horsepower, variable speed, reversible, direct current electric motor connected 
to  a ball-bearing lead screw by an electric clutch. The lead screw converts the rotary 
motion of the motor to linear motion of a piston via a constant velocity cam follower 
mechanism; movement of the piston then pushes fluid out of the orifice. As shown 
in figure 4, the generator is attached to a traversing platform which is mounted above 
the water surface; the piston cylinder, the orifice tube and orifice were all submerged 
below the water surface. All parts exposed to  the water were constructed from PVC 
plastic in order to resist corrosion. 

The vortex generator was designed with interchangeable parts which allow the 
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FIGURE 5. Vortex-generator apparatus. 

generation of vortex rings with a broad range of characteristics. The motor speed is 
continuously variable up to 7400 rev/min. Cams having stroke lengths of 0.64, 1.27, 
1.9 and 2.54 cm were used; in addition stroke lengths between these values could also 
be obtained by adjustment of electrical and mechanical stops (not shown in figure 5) .  
The piston stroke length was monitored by a Linear Variable Displacement 
Transducer (LVDT). Piston diameters of 1.9, 2.54, 3.81 and 5.08cm and orifice 
diameters of 0.95, 1.43, 1.90, 2.22, 2.54, 3.18 and 3.81 cm were used. 

Let LM denote the length of the cylindrical slug of fluid ejected from the orifice, 
DM the orifice diameter and H M  the height of the orifice from the flat plate near the 
floor of the channel. For the experimental studies, variation of stroke length, piston 
size, orifice diameter and orifice tube length allowed the examination of L M / D ,  ratios 
from 0.75 to 3.41 and HM/DM ratios from 2.85 to 6.8. Note that the capability to 
vary the HM/DM ratio was believed to be important since the vortex ring must have 
sufficient distance to fully form (or roll-up) before it encounters the wall. Saffman 
(1975) suggests that roll-up is not complete until the ring has moved a distance on 
the order of several ring radii away from the orifice. Similarly, Sallet & Widmayer 
(1974) estimate that vortex rings are fully developed once they have moved three 
diameters away from the generation orifice. In  all of the experiments particular care 
was taken to ensure that each vortex ring was fully developed before it was 
sufficiently close to the surface to be significantly affected by the wall. 

The principal measurable quantities which characterize the fully developed vortex 
rings are the initial vortex-ring diameter Do, the initial ring velocity V,, and the initial 
Reynolds number Re,. Here Re, = V, D,/v. All results reported in this study were 
obtained with laminar vortex rings which were stable prior to impact with the surface. 

In  order to evaluate all the flow characteristics of interest for a particular vortex 
ring, it was necessary to perform multiple observations for each set of vortex-ring 
parameters. Consequently, the vortex generator had to have the capability of 
producing a series of rings with identical characteristics. The repeatability of the 
generator was tested by configuring the generator to produce a vortex with a 
particular set of characteristics for at least two different times during the course of 
the experimental program, between which the generator had been reconfigured to 
produce other vortex rings. The characteristics of the fully developed vortex ring such 
as ring diameter, translational speed and initial Reynolds number were evaluated for 
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FIQURE 6. Vortex ring approaching a solid plane surface (side view, dye placed in vortex ring). 
Vortex propagating from the top to the bottom of the picture. Re,, = 560. 

each situation and were found to be repeatable to within f 4 yo, f 1 % , and f 4.5 % 
respectively. These values fall well within the experimental measurement errors of 
f 7 yo, f 10 % , and f 11 % in the respective quantities; a detaileduncertainty analysis 
for the data is given by Cerra t Smith (1983). To further assess the repeatability of 
the generator, the interaction of the vortex ring with the fluid adjacent to the plane 
wall was observed qualitatively for each case and found to be very similar (if not 
identical). 

Flow visualization as the vortex ring approached the wall was accomplished using 
two different, but complementary methods of dye injection. In the first method, dye 
was injected into the fluid within the vortex-generator orifice tube just prior to the 
generation of a vortex ring; figure 6 shows a typical ring visualized by this method. 
The particular dye used was a 1 : 10 mixture of blue food colouring and water; the 
blue colour was determined to provide a better contrast than other available colours. 
The specific gravity of the dye mixture was 1.0014; in subsequent tests, 0.6 % alcohol 
(by volume) was added to the dye mixture to decrease the specific gravity of the dye 
mixture to that of water. No discernible changes in the results were observed. The 
placement of dye in the primary vortex ring is an effective means for visualizing the 
initial flow interactions of the ring with the fluid adjacent to the plane surface. 
However, as the interaction progresses, the dye in the ring was observed to become 
more diffuse, which made the motions of the deformed ring progressively more 
difficult to distinguish. In  addition, with this method the reaction of the fluid initially 
adjacent to the surface could only be inferred by observations of the deformation of 
the primary vortex ring. 

To allow observation of the reaction of the fluid in the unsteady boundary layer 
on the plane wall, a sheet of fluid immediately adjacent to the plane surface was 
marked with dye; the dye sheet was initialized by slowly injecting dye over a region 
of the surface using an elongated needle and hypodermic syringe. When this dye-sheet 
technique was used, the primary vortex ring was not marked with dye ; consequently 
the interior of the primary ring was not visible, and only the outline of the vortex 
and the induced effects of the vortex on fluid adjacent to the surface were observed. 
The main advantage of the dye-sheet technique is that it allows clear observation 
of the behaviour of the fluid in the boundary layer near the wall as well as the 
subsequent interaction of the boundary-layer fluid with the primary vortex. Clearly, 
each visualization method is suited to a different purpose; however, because of the 



Impact of a vortex ring on a wall 111 

Video 
(oblique plan vies 

Plexiglas 
camera viewing box 

Vortex 
generator 

Video camera 
(side view) 

FIQURE 7. Perspective view of camera viewing angles and ooordinate system orientation. 

consistent repeatability of each experiment, it  is possible to compare the results from 
both approaches to obtain a clear picture of the overall flow field. 

As each experiment progressed, it was viewed and recorded using a two-camera 
INSTAR high-speed video system manufactured by Video Logic Corporation. 
Framing at a rate of 120 frames/s, the cameras are synchronized with strobe lights 
to achieve an effective shutter exposure time of lo-& a. The system has a split-screen 
capability which allows the simultaneous viewing of two different fields-of-view using 
two different cameras. Videographic data are recorded on a one-inch magnetic tape 
recording unit and can be played back at real-time forward speeds or in flicker-free 
forward and reverse slow-motion. Frame-by-frame and stop-action capabilities allow 
further detailed analysis of the recorded data. Individual pictures from the tapes were 
obtained using either (i) a videographic copier (a latent image process using heat 
developed dry silver paper) which interfaces directly with the video recorder or (ii) 
conventional photographs taken directly from the television screen. The photographs 
presented in this paper were obtained using the second approach with type 57 
Polaroid film and a Polaroid back for a 4 x 6 Graflex camera. 

The two viewing angles employed in the present study are depicted schematically 
in figure 7. Since the vortex generator obscured conventional plan views of the vortex 
impact, oblique plan views were taken with the camera offset to the side of the vortex 
generator, as shown in figure 7. In order to obtain a sharp oblique plan-view, a 
Plexiglas viewing box was used to prevent the distortion caused by the diffraction 
of light at  the water surface. The lighting equipment consisted of two 90 watt and 
one 1000 watt strobe lights (synchronized with the cameras) and two auxiliary quartz 
studio lamps which were used for difficult lighting situations. A white plastic 
background with backlighting was used during recording, with the strobe lights 
mounted as depicted in figure 4. 

In  the present study, sixty-two different sets of physical parameters were 
considered, allowing examination of laminar vorfiex-ring impacts having initial 
Reynolds numbers ranging from 105 to 3000. The visual data recorded included video 
sequences taken for both qualitative observation of the flow behaviour and for 
quantitative evaluation. In  all, four hours of video tape were recorded, consisting of 
1800 separate vortex sequences. 
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5. Flow visualization results 
A typical trajectory of a vortex ring as predicted by inviscid theory has been given 

in figure 3 (as the solid line) ; as the ring approaches the wall, inviscid theory indicates 
that the primary radius of the ring will expand without bound and that the core 
moves closer and closer to  the wall. I n  the experiments described in this paper, the 
trajectory of the ring began to depart substantially from the predictions of inviscid 
theory as soon as the ring was close to the wall. I n  particular the rate of increase 
in ring diameter slows significantly and in some cases the diameter of the primary 
ring was actually observed to  attain a maximum and begin to decrease ; in addition, 
the approach toward the wall is generally arrested and the primary vortex was 
usually observed to rebound from the surface. The phenomenon that is normally 
responsible for the observed deviation from inviscid theory is an unsteady separation 
effect, induced in the boundary layer on the wall by the moving primary vortex. The 
separation usually culminates in the ejection of a secondary vortex from the 
boundary layer, which then interacts with the primary ring, giving rise to a 
substantial divergence from the purely inviscid description of the flow. I n  this section, 
the results of the flow-visualization studies are employed to document the generally 
observed features of the vortex-wall boundary-layer interaction. It should be noted 
that the sequences that are presented here represent only a small sample of the many 
video sequences used to  draw the conclusions presented in this paper. Each selected 
sequence contains photographs taken from a particular video sequence ; unfortu- 
nately, the photographic sequences cannot convey the same degree of physical 
appreciation of the flow-field development as experienced when viewing the original 
video sequence in slow-motion replay. 

It may be inferred from (15) than when the ratio Y(t) /R(t)  is large, the tangential 
velocity induced near the wall is small. On the other hand, as the ring reaches a height 
above the surface comparable to the ring radius, the dimensionless tangential flow 
speed induced near the plane wall becomes O(1); consequently the flow in the 
unsteady boundary layer begins to  develop, progressively strengthening velocities as 
the vortex continues to  approach the surface. It may be verified from (15) that a t  
r = R(t)  (directly below the core of the moving vortex ring) a velocity maximum 
occurs near the wall, corresponding to an instantaneous pressure minimum. Outboard 
of the moving vortex core, the pressure increases radially outward; consequently the 
boundary-layer fluid outside the moving vortex core is continually exposed to  an 
adverse pressure gradient and eventually boundary-layer separation occurs near the 
surface. It is convenient to  first discuss in general terms the sequence of observed 
events, during and after the period when boundary-layer separation is observed. 

The separation process initiates in a manner similar to  that described by Harvey 
& Perry (1971) and Walker (1978). A closed region of recirculation appears on the 
wall in the region of adverse pressure gradient ; in the classical theory of bluff-body 
separation (see, for example, Riley 1975) such an event is termed ‘separation’. Once 
this has occurred, an axially symmetric ring of eddying flow with vorticity of the 
opposite sign to that of the primary vortex ring develops adjacent to the wall 
outboard of the perimeter of the vortex ring. Rapid thickening of the boundary layer 
is then observed in a highly localized region near this wall eddy ; this portion of the 
overall process is depicted schematically in figure 8 (a) .  Note that the meaning of the 
term ‘separation’ has been controversial and some authors (for example, Sears & 
Telionis 1975) prefer to  reserve the term for the type of event depicted in figure 8 (a )  
where an initially thin boundary layer is about to strongly interact with an essentially 
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Separation of boundary layer 
Primary vortex ring 

U 

Primary vortex ring 

Secondary vortex ring 

Primary vortex ring 

\Secondary vortex ring 

FIQURE 8. Schematic diagram of primary, secondary and tertiary vortex rings: (a) primary vortex 
ring approaching the solid surface and inducing separation in the boundary layer; (b)  generation 
of a secondary vortex ring; (c) generation of a tertiary vortex ring. 

inviscid outer flow. Whether the term separation is used to denote the initial 
appearance of an eddy of recirculating flow on the wall or to denote the onset of an 
inviscid-viscous interaction is to some extent a matter of preference; in any case, in 
the present configuration, the first event is a precursor of the second. 

When the original vortex ring is of sufficient strength, the boundary-layer 
separation culminates in a viscous-inviscid interaction in which a vortex ring of the 
opposite rotation is ejected from the boundary layer; this event is depicted 
schematically in figure 8(b ) .  To distinguish between the two vortex rings it is 
convenient to refer to  the original vortex ring as the primary vortex ring and to the 
ring generated from the induced boundary-layer flow as the secondary vortex ring. 
Once the secondary ring is formed, the primary and secondary rings interact in an 
apparently inviscid manner which appears to be predictable from the Biot-Savart 
law. The secondary vortex ring is observed to orbit from the outside perimeter of 
the primary vortex ring over the top of the core and towards the inside perimeter 
of the primary ring as indicated in figure 8 ( c ) .  In cases where the primary vortex ring 
has sufficient strength, after formation of the secondary ring, another vortex ring is 
observed to form outboard of the primary ring in much the same manner as the 
secondary ring. This third ring also has vorticity of opposite sign to that of the 
primary ring and will be referred to as the tertiary vortex ring. A side view showing 
the typical proximity of these three rings is shown schematically in figure S ( c ) .  

With this general discussion of terminology and the overall features of the 
interaction, it is now possible to examine some specific cases. The detailed features 
of the process depend on the Reynolds number. A Reynolds number (Re = r/v) has 
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previously been defined in connection with the definitions in (16); here r is the 
circulation associated with the primary vortex ring. Because of the known difficulties 
(Cerra & Smith 1983) associated with obtaining an accurate and direct measurement 
of r, it proved convenient to define another Reynolds number, based on the initial 
characteristics of the primary ring, according to 

(33) Re,, = v. KID, 

Here V, and Do are the initial translational velocity and diameter of the fully 
developed primary vortex ring respectively ; these quantities were obtained from the 
video sequences at axial locations on the order of 2.50, from the orifice of the vortex 
generator. 

For low initial Reynolds numbers corresponding to values of Re, less than 
approximately 250, no secondary or tertiary vortices were observed to form as the 
primary vortex ring impacts the wall, although a slight rebounding was observed. 
Apparently, the vorticity of the ring slowly diffuses (Cerra & Smith 1983) with the 
wall acting as a sink for vorticity. The behaviour observed in such cases is consistent 
with that reported by Peace & Riley (1983) in their low-Reynolds-number Navier- 
Stokes calculations for a two-dimensional vortex pair approaching a wall. Peace & 
Riley (1983) report a slight rebounding of the vortices; however, no separation is 
observed near the wall, and the vorticity associated with the primary vortices 
gradually diffuses. 

For initial Reynolds numbers, Re,, greater than approximately 250, the impacting 
primary ring was observed to induce a separation near the wall; a typical sequence 
is shown in figure 9 for Re, = 564. Here only the right-hand half of a dyed vortex 
ring has been photographed as the ring moves toward the surface. Each picture is 
of single frames from a video sequence taken 0.25 s apart; the sequence is along each 
row successively from left to right. The finite increase in the diameter of the marked 
primary ring may be observed along the first row. The secondary ring is created in 
the unmarked fluid near the wall and the first hint of its presence may be seen as 
the indentation in the dyed primary ring in the second photograph in the top row. 
The process continues into the third photograph; by the fourth photograph in the 
top row, the outline of the secondary vortex is now visible as dye originally associated 
with the primary ring has been wrapped around the core of the secondary vortex. 
Through the second row of photographs, the secondary vortex ring rotates over the 
core of the primary vortex and its diameter shrinks. The rotation of the end of the 
dye spiral in the secondary vortex clearly shows the sense of vorticity in the secondary 
ring. In the third row of photographs, the secondary vortex gradually disappears 
from view as it orbits into the interior of the primary ring. At the same time, the 
development of a third, tertiary vortex may be observed outboard of the core of the 
primary ring. 

A plot of the trajectories of the vortex centres for Re, = 564 is given in figure 10. 
These trajectories were established from sequences of videographic prints. Repeated 
viewing of the sequences in slow motion was usedin conjunction with the videographic 
prints to assist in the identification of the centres of the vortex cores. Inviscid theory 
predicts that the primary vortex ring will asymptotically approach the surface with 
an ever-increasing diameter; this theory models the behaviour of real vortex rings 
which are far from the surface. However aa the vortex nears the surface, the 
separation near the wall results in the ejection of the secondary vortex ring from the 
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FIQURE 10. Trajectories of the cores of the primary, secondary and tertiary vortex rings for 
Re, = 564. Curve I : trajectory of the primary vortex ring. Curve 11: trajectory of the secondary 
vortex ring; point A on curve I coincides in time with the origin of curve 11; point B on curves 
I and I1 coincides in time with the origin of curve I11 (the trajectory of the tertiary vortex); 0, 
time intervals of 0.5 s. 

wall region which in turn causes an alteration of the motion of the primary ring. Since 
the secondary ring has the opposite sense of circulation to the primary ring, in a 
primarily inviscid interaction the flow induced by the secondary ring acts to slow 
the radial outward motion of the primary ring and also to cause the primary ring 
to rebound from the wall. In  turn, the secondary ring is convected by the velocity 
field induced by the primary ring toward the centre of the primary ring. At  a later 
stage, the primary ring induces a further separation and boundary-layer eruption in 
the form of a tertiary vortex which precipitates a second rebound of the primary 
vortex. Note that the formation of secondary and tertiary vortices occurs near points 
in the primary trajectory when the primary vortex is closest to the wall. In addition, 
a finite limit to the radial growth of the primary ring diameter may be clearly 
observed in figure 10. 

For cases with Re, less than approximately 600, rebounding of the primary vortex 
was observed which was accompanied by a dramatic diminution of the outward radial 
motion of the primary core. As Re, was increased, the strength of the spawned 
secondary vortex relative to that of the primary vortex appeared to increase to the 
extent that reversals in the radial velocity of the primary ring were observed. This 
feature is illustrated in figure 11, where the trajectories of the primary vortex are 
plotted for Reynolds numbers ranging from Re, = 564 to 2840. At the lowest 
Reynolds number, only rebounding of the primary vortex occurs; each of the other 
three trajectories is for an Re, in excess of 1300 for which reversal of the radial motion 
of the primary vortex, as well as rebounding, were always observed. It may be seen 
from figure 11 that the strength of reversal of the primary vortex, as well as the 
complexity of the trajectory, increases with increasing initial Reynolds number Re,. 

The physical explanation for the rebounding and the reversals observed in the 
trajectories of the primary vortex ring appears to lie in the velocities induced by the 
presence of the secondary and tertiary vortices. As the primary vortex approaches 
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FIGURE 11.  Trajectories of the right cores of the primary vortex rings (a) Re, = 564, (a) Re,, = 1680, 
( c )  Re, = 2550, ( d )  Re,, = 2840; 0, time intervals of 0.75 s. 

the wall, it experiences a radial velocity due to the image vortex below the surface, 
as well as a self-induced axial propagation velocity. However, the creation of a 
secondary vortex through an unsteady separation effect near the wall creates a 
situation where the secondary and primary vortices induce further velocities on one 
another. It is these velocities which are responsible for the rebounding and reversal 
in the trajectory of the primary vortex; likewise, the secondary vortex orbits the 
primary vortex in response to the induced velocity field of the primary vortex. Once 
the creation of the secondary vortex has occurred, the interaction between the two 
vortices is essentially inviscid and in principle may be estimated from the Biot-Savart 
law. 

It may be inferred that the secondary vortex will always cause the primary vortex 
to rebound. For a reversal in the primary trajectory to occur, the secondary vortex 
ring must be strong enough to cause at least an instantaneous inversion of the radial 
velocity of the primary ring. In  figure l l ( b ) ,  the first reversal is caused by the 
secondary vortex ring and is only momentary, creating a loop in the trajectory. The 
second reversal is caused by the tertiary vortex ring ; this reversal is also brief and 
results in a second loop in the trajectory. The primary ring then apparently continues 
to increase in diameter; however, at this stage, three-dimensional effects begin to 
have a dominant effect in the flow field and it is not possible to track the evolution 
of the primary vortex further. For the cases at higher Reynolds numbers in figures 
11 (c )  and 11 ( d ) ,  the trajectories end up in a state of permanent reversal. This 
permanent reversal occurs because the tertiary vortex is sufficiently strong and 
because of a complex interaction that occurs between the three vortex rings. 

As the Reynolds number Re, increases, wavy instabilities are observed to occur 
in the secondary vortex. In  figure 12, a sequence of photographs is shown for a marked 
ring at Re, = 1250 impacting the wall. In  the sequence in the first column, the 
secondary vortex forms and orbits over the primary vortex. In  the second column 
the secondary vortex moves toward the interior of the primary ring and a tertiary 
vortex may be seen on the outside of the primary ring. However, it may also be seen 
that a waviness develops in the secondary vortex ring and as time increases the 
three-dimensionality becomes more pronounced. The same development may be seen 
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FIQURE 12. Vortex ring impacting solid plane surface (side view). Illustrates development of 
azimuthal waviness in secondary vortex, visualized by placing dye in vortex ring. Re, = 1250. 
Pictures are 0.083 s apart. 
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FIQURE 13. Vortex ring impacting solid plane surface (side view). Illustrates development of 
azimuthal waviness in secondary vortex, visualized by placing dye on the surface. Re, = 1250. 
Picture time units are seconds. 
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FIQURE 14. Vortex ring impacting solid plane surface (oblique plan view, dye placed in vortex). 
Illustrates development of azimuthal waviness in secondary vortex. Re,, = 1250. Picture time units 
are seconds. 
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from a different perspective in figure 13. In this sequehce of photographs, the fluid 
near the wall has been marked with dye and the primary vortex is only weakly 
marked. As the secondary vortex forms and rotates into the interior region of the 
primary ring, the primary ring appears to be ensheathed with a dye sheet. Upon 
comparing figures 12 and 13, it  is evident that the secondary vortex contains fluid 
originally from the primary vortex as well as from the originally quiescent fluid near 
the plate. 

A third perspective in oblique plan-view for this case is provided in figure 14 for 
the dyed primary vortex. Note that the amplitude of the azimuthal waves, which 
develop on the secondary vortex, increases with time. It is well known (Widnall & 
Sullivan 1973) that a vortex ring propagating through an otherwise quiescent fluid 
can develop an instability which leads to the development of an azimuthal waviness 
in the ring. Whether or not the instability occurs depends on the vortex Reynolds 
number, as well as the distance travelled, with larger values of either of these 
quantities implying that the development of an instability is more likely. The present 
experiments were configured so that the primary rings remained stable prior to 
impact. Of the many vortices generated, a few developed the azimuthal waviness in 
the primary ring prior to impact with the wall region; however, the vast majority 
appeared to be stable and axially symmetric upon reaching the wall region. In  fact, 
it may be observed in figures 12 and 13, that the initially stable primary ring does 
not display any azimuthal distortion even after the secondary vortex has developed 
extreme azimuthal waviness. The instability thus appears to be initiated in the 
secondary vortex and is believed to be associated with compression of the secondary 
vortex as it orbits into the interior of the primary vortex. The instability in the 
secondary vortex was observed to ultimately induce an apparent waviness in the 
primary vortex ; this process was then observed to lead to a degeneration of the flow 
field into a truly three-dimensional state. The scales of the motion were observed to 
continually decrease until an apparently chaotic ‘ turbulent’ state occurred. The 
development of this azimuthal loop instability on the secondary vortex is complex 
and is documented elsewhere (Cerra & Smith 1983). 

For the Reynolds number range of Re, = 470 to 1600, the wavy-loop type of 
instability was invariably observed to occur in the secondary vortex. The range 
between 1600 and 2500 appears to be a transition zone to another type of instability 
which Cerra & Smith (1983) have termed a kink instability. An example of this type 
of instability may be seen in figure 15 which is a sequence of oblique plan-view 
photographs for Re, = 2550. The secondary vortex forms in the same manner as for 
the lower Reynolds numbers; i t  then develops a weak azimuthal waviness which does 
not increase in amplitude once the secondary vortex orbits into the interior of the 
primary ring. The secondary vortex then appears to pause for some time within the 
interior of the primary ring until the tertiary vortex ring develops and orbits to a 
position above the primary ring; this process may be seen in figure 15 in the interval 
from t = 0.308 to t = 0.475. At this point, a rapid ejection of the secondary ring 
was observed and the secondary ring moved quickly away from the plate, dragging 
the tertiary ring with it. A typical side view of this process is shown in the sequence 
in figure 16 for Re, = 3000. Note the mushroom cloud caused by the abrupt ejection 
of the secondary ring, and the rapid degeneration of the flow to an apparently 
‘turbulent ’ state. The trajectories for a typical case in this Reynolds number range 
are shown in figure 17. It may be observed that there are two occurrences of 
rebounding and reversal of the primary vortex before ejection of the secondary vortex 
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FIGURE 15(a). For caption see facing page. 

occurs. The flow development in this Reynolds number range is complex and is 
discussed in detail elsewhere (Cerra & Smith 1983). 

A value of Re, = 3000 represents an upper limit for the vortex interactions 
considered in this study. Beyond this value it was not possible to consistently produce 
laminar primary vortices which remained stable as they approached the wall region. 
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FIQURE 15. Development of kink structures secondary vortex with secondary vortex ejection. 
Visualized by placing dye on the surface (oblique plan view). Re,, = 2550. 

5 
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FIGURE l6 (a) .  For caption see facing page. 
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FIGURE 16. Development of kink structured secondary vortex with secondary vortex ejection 
(side-view, dye placed on surface). Re,, = 3000. 

5-2 
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FIQURE 17. Trajectories of the right cores of the primary, secondary and tertiary vortex rings for 
Re, = 2840. Curve I : trajectory of the primary vortex ring. Curve 11: trajectory of the secondary 
vortex ring. Curve I11 : trajectory of the tertiary vortex ring. Point A on curve I coincides in time 
with the origin of curve 11. Point B on curves I and I1 coincides in time with the origin of curve 
I11 ; marks time intervals of 0.5 s. Observe the rebound and reverse of the primary vortex and the 
ejection of the secondary vortex. 

6. Numerical solution for the ring trajectory 
I n  order to  calculate a numerical solution of the ring trajectory as predicted by 

inviscid theory, it is necessary to  integrate (13). With reference to (6) and (12), it may 
be seen that in order to  initiate the integration i t  is necessary to  specify the initial 
location of the core of the ring (Ro, Yo)  and the constant C in (11) and (12). I n  order 
to compare with the experimental results, values selected for (Bo, Yo)  and C were 
taken from a particular video sequence, the results of which are plotted in figure 3. 
I n  this experimental run, the trajectory of a dyed vortex ring propagating toward 
the wall was viewed and recorded with the high-speed video system. By careful 
examination of each frame of the video sequence using videographic prints, the 
instantaneous location of the vortex core was identified. I n  figure 3, the open triangles 
are data points from the experiment; the numbers beside each data point are the 
frame numbers from each video frame. In figure 3, only data from every fifth frame 
have been shown; the time interval between data points is 

The process of vortex-ring formation by the ejection of a finite slug of fluid through 
an orifice has been discussed by Saffman (1975) who points out that  the roll-up process 
is not generally complete until the ring has moved several ring radii away from the 
orifice. I n  accordance with this observation, the initial position (Ro, Yo) that  was used 
in the numerical integration was taken directly from the experimental data at frame 
460, which corresponded to  a vertical distance from the orifice of the generator 
approximately 2.5 times the initial ring radius. Note that in the preceding frames 
(450 to 460) the ring appears to be contracting in radius. 

To obtain a representative value for the volumetric constant C defined in ( l l ) ,  a 
fixed horizontal hydrogen bubble wire was placed in the water channel in such a 
location that the vortex ring would convect over it. The wire was positioned at 
various vertical locations between those indicated by frames 460 to 490 in figure 3;  

seconds. 
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FIGURE 18. Schematic sketch of the hydrogen bubble line (indicated by the dashed line) used to 
estimate the vortex core size. 

the wire was pulsed just as the vortex ring reached the immediate vicinity of the wire 
to produce a line of hydrogen bubbles in the flow. As the ring convects past the bubble 
wire two ‘peaks’ are produced in the bubble lines as sketched in figure 18. These peaks 
correspond to the location where the angular velocity about the vortex core is largest. 
Note that the peak on the outboard side of the core is relatively pronounced while the 
peak on the interior side is rather small as indicated in figure 18. The bubbles tend 
to concentrate in the core of the vortex where the angular velocity is a minimum. 
An estimate of the core radius a(t)  was then obtained by measuring the distance from 
the peaks to the bubble concentration. An estimate of the constant C may be obtained 
by directly applying (l l) ,  since the corresponding ring diameter may readily be 
evaluated from the video sequences. For the particular sequence depicted in figure 
3, a value of C = 3.33 x 

With the initial position (Ro, Yo) corresponding to frame 460 in figure 3 and the 
empirically determined value of C, equations ( 13) were integrated numerically 
forward in time using a fourth-order Runge-Kutta method. A series of calculations 
using very small timesteps were carried out to ensure that the numerical error in this 
procedure was negligibly small. The predicted trajectory is shown in figure 3, where 
it may be observed that there is relatively good agreement with the experimental 
results. The fluctuations in ring diameter between frames 460 and 525 are well within 
the experimental error. In  order to compare with the initial data points, the numerical 
solution was extended back to a time prior to that corresponding to frame 445. The 
initial behaviour of the ring (frames 445-460) may be attributed to the effects of the 
generator nozzle and bears a resemblance to the fluctuations observed by Maxworthy 
(1977) in the vicinity of the generator orifice. It may be inferred from the data points 
corresponding to frames 530 and higher that the ring is rebounding from the plate 
and deviating progressively from the trajectory predicted by inviscid theory. This 
behaviour is due to the production of the secondary vortex discussed in the previous 
section. 

One point of interest concerns the circulation of the ring r. Since r has been scaled 
out of the velocities and time (in defining dimensionless variables), the shape of the 
trajectory is independent of circulation. The particular value of r influences only the 
rate at which the vortex ring moves along the trajectory in figure 3. The direct 
experimental measurement of r is a very difficult problem which has been discussed 
by a variety of authors (Sullivan, Widnall & Ezekiel 1973; Maxworthy 1977; Didden 

cm9 was obtained in the manner described. 
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1977; Brasseur & Chang 1981 ; Cerra & Smith 1983) who have suggested a variety 
of techniques. The merits ofthese approaches will not be discussed here but the reader 
is referred to a careful comparison and critical discussion of the techniques in Cerra 
& Smith (1983). It emerges that discrepancies of the order of 50 % are not uncommon 
in comparing two methods of directly measuring r. I n  the present study, one 
objective was to obtain a comparison between predicted and observed separatior 
times in the boundary layer, and to  facilitate this comparison, an estimate of r wai 
required. This estimate was obtained indirectly by using the formula for the 
self-induced velocity of a vortex ring ; in dimensional form the self-induced velocity 
Us is given by 

us = +og 4nLR (:)-;I, (34) 

for a ring in which a / R  4 1 and for which the circular core is in a state of solid-body 
rotation. When the ring is a t  locations remote from the wall, (for example, at locations 
corresponding to frames 460 to 500 in figure 3) the influence of the image vortex is 
small and the speed of the ring will be given by (34). Consequently measurements 
of Us, R and a (using the method discussed in connection with figure 18) yield a value 
of r u p o n  substitution in (34). For the trajectory in figure 3 ,  the value of rproduced 
by this approach was 17.5 cm2/s. 

It is important to note that there is a variety of assumptions that have been used 
to  arrive a t  values of C and f from the experiments. The core has been assumed 
circular and in solid-body rotation; other forms of (34) could be considered, 
corresponding to  different distributions of vorticity in the vortex core. I n  addition, 
the measurement of Us, R(t)  and particularly a(t)  (via the method discussed in 
connection with figure 18) are subject to error. However, our purpose here is not to 
attempt to model closely the internal dynamics of the vortex core, but rather to 
obtain values of r and C which are of the correct order of magnitude and which are 
reasonably consistent with experiment. Note that r is not sensitive to  the particular 
value of C assumed in (1 1)  : a change of f 20 % in the empirical value of C = 0.0333 cm3 
produces changes of f 3.5 % in the value o f r  = 17.5 cm2/s. With such values in hand 
it is now possible to  consider the detailed nature of boundary-layer development as 
the ring approaches the wall. 

7. Numerical solution of the boundary-layer problem 
A solution of (21) and the associated equations (26) and (30) (at the boundaries 

r = 0 and r + 00 respectively) may be developed by expanding the solution as a power 
series in time according to 

aF aP 
- ( r ,  7, t )  = erfv+t-(r, y)+O( t2 ) .  
a7 all 

(35) 

This procedure is well known (Blasius 1908) and yields a solution which is valid for 
small time; to  extend the solution to  larger times a fully numerical integration of (21) 
was carried out. However, the first two analytic terms in (35) have been evaluated 
by Doligalski (1980) and this time-series solution served to  provide a basis for 
comparison of the accuracy of the fully numerical approach in the initial stage of the 
integration. 
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Because the range of the radial variable is semi-infinite, i t  is convenient (for the 
numerical solution) to introduce a new variable 6 defined by 

5 = - J  U,(X,  t )dx ,  a(t) = (36% b )  
1 g(r)  

0 

where U,(r,  t )  is the outer inviscid velocity given by (15) and g(r) is a monotonically 
increasing function of r (to be selected) with g(0) = 0 and g+co as r+  00. This 
transformation is one-to-one and compresses the semi-infinite range in r ,  [0, co), to 
the finite range for of [0, 1). It is easily confirmed that g must be selected so that 
g = O(&) for small r in order that 5 = O(r )  as r+O; on the other hand, in order to 
maintain the same rate of decay in U ,  for large r,  it  is necessary that g be O ( r )  as 
r+ co . A simple choice for g satisfying these criteria is 

(37) 

where c is a constant. The principal effect of transformation (36)  is to expand the 
region which is instantaneously below the core of the vortex ring where rapid 
boundary-layer growth is expected. One additional feature of (36)  is that the vortex 
core may be located close to the centre of the 6 range during the entire integration; 
by trial-and-error it was determined that a value of c = 0.25 achieved this objective. 
Note that in the physical space, the radial location of the vortex core increases 
continuously with time. 

Due to the complicated form of the inviscid velocity distribution U,(r, t )  given 
by (15) ,  the integrations in equations (36) were performed numerically at any fixed 
value of t  using a modified Simpson’s rule procedure (Dennis & Walker 1971). In  this 
approach, at  any given time t a uniform grid spacing in the r-direction was defined, 
with mesh size Ar = 4 x the integral on the right-hand side of (36a)  was then 
evaluated for each point in the r mesh. The numerical integrations were carried out 
using a uniform mesh spacing in the &coordinate; for a given value of f I  in (36) ,  the 
corresponding value of r (at fixed t )  was determined by a process of inverse 
interpolation of the results of the integration in the r-coordinate. 

g(r) = (cr+ (1 - c ) r2 ) t ,  

The unsteady boundary-layer equations (21) may be written as the system 

aF 
- = u, 
a7 

au a2u au au 
4t- = -+P-+Ru+Q-+s, 

at a72 a7 ak. (39) 

where the functions in (39) are defined by 
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In these equations, aU,/at and aU,/ar are to be regarded as known functions of 
(c,  t ) ;  for a given value off; and hence r ,  both gradients are evaluated by differenti- 
ation of (15). The specific expressions are 

(44) 

where k, is given in (15) and dY/dt and dR/dt by (13); in addition 

au, = "' [ {2B(k,) - E( k,)}  + k0{2B'( k,)  - E'( k, ) } ]  . (46) 
ak, 4n&ri( 1 - k;) 1 - k, 

Finally in (41), a[/at may be calculated from 

The equations (26)  and (30), describing the boundary-layer development on the 
symmetry axis and at large distances from the ring, may also be written in a form 
similar to (39) according to 

On the symmetry axis ( r  = f ;  = 0) 
aF0 

o a7 
u = u  =- 

and from (26)  

1 Po = 27+8atF, 

4t da R, = -4at~,--- 

4t da 
a dt 

Do = 4at+-- 

where the subscript 0 denotes quantities at  f ;  = 0 and a = a(t) is given by (25) .  A t  
large distances from the ring ($+ 1, r+ 00)  

where the subscript 1 denotes values at f ;  = 1 andP(t) is defined by (29). The boundary 
conditions for (39) and (48) are 

U = F = O  a t y = 0 ,  U + l  asy+oo. (53) 

U = U ,  = U, = erf 71 at t = 0, (54) 

A mesh in the f ; ~  plane was defined with spacings h, and h, in the 5- and ?-directions 
respectively. A number of mesh sizes were used as a check on the accuracy and values 

The initial conditions are 
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h, = 0.00555 and h, = 0.0667 were determined to give accurate results. The last 
condition in (53) was applied a t  7 = 6 as an approximation and this value was found 
to be large enough to ensure that there was no significant effect on the computed 
results. In  the initial stages of the motion, variations with time are relatively intense, 
and to ensure good accuracy, the timestep was initially taken to be very small. The 
calculations were initiated with five steps with At = 0.001 until t = 0.005; then four 
steps with At = 0.005 were taken until t = 0.025; at this stage, the timestep was 
increased to At = 0.025 and held constant throughout the integration. 

The numerical methods used have been described by Doligalski BE Walker (1984). 
The first method is based on a Crank-Nicolson approach and is second-order accurate 
in both space directions and in time. At each timestep, the solution of (48) at 6 = 0 and 
5 = 1 was first advanced using a normal Crank-Nicolson method; these computed 
values then provide boundary conditions at [ = 0 and 1 for the interior problem 
(0 < 5 < 1 ) .  The solution of (39) was then advanced one timestep; the difference 
equations resulting from the numerical approximations are nonlinear and were solved 
iteratively using successive-over-relaxation. Typically 15-20 iterations or sweeps of 
the mesh in the interior were required to obtain convergence; this was considered to 
have occurred when successive iterates for U agreed to within four significant figures 
at all internal mesh points. In the latter stages of the integrations, after separation 
occurs, appreciable normal velocities begin to develop within the boundary layer ; the 
matrix problem associated with the Crank-Nicolson method failed to remain 
diagonally dominant and the iterative scheme broke down. In  this situation, the 
alternative differencing scheme of Doligalski & Walker (1984) was used ; this 
approach affects only the differencing of the convective terms and results in a matrix 
problem which is always diagonally dominant. It was found that the alternative 
differencing scheme could be used to continue the boundary-layer integrations well 
beyond the point where the Crank-Nicolson scheme failed. 

8. Calculated results 
The calculation of the inviscid trajectory has been discussed in $6 and the 

trajectory for a particular case has been plotted in figure 3. To initiate the 
boundary-layer integrations it is necessary to select an origin of time, and calculations 
were originally carried out using an initial ring position corresponding to frame 460 
in figure 3. However, it emerged that at this location the ring is so far away from 
the wall that very little boundary-layer development was observed for some time. 
In fact, in the majority of the experiments little development was observed near the 
wall until the vortex ring was within a distance from the wall comparable to its 
diameter. For this reason, it was decided to define t = 0 in the experiments as the 
instant when Y = 2R, as a standard and convenient origin from which to measure 
separation times in the boundary layer. In  accordance with this criterion, the 
numerical integrations were started with an initial configuration corresponding to 
frame 513 in the sequence depicted in figure 3; for this case, L = 1.322 cm and 
& = 1.184 cm, R, = 0.589 cm. 

In  the initial stages of the integrations, the boundary-layer growth rate was still 
relatively small and the streamline patterns display an expected downward and then 
upward motion, as depicted in figure 19 (a)  at t = 1.4. In figure 19, the instantaneous 
streamlines have been plotted in the r-coordinate (rather than the [-coordinate used 
in the numerical integrations) to give an undistorted picture of the actual flowfield. 
In addition, the triangle at the top of the first graph denotes the initial radial location 
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FIGURE 19. Instantaneous streamlines in the boundary layer at various times. (a) t = 1.4. 
( b )  t = 1.5. (c) t = 1.6. (d) t = 1.7. (e) t = 1.8. (f) t = 1.9. 
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of the vortex core while the vertical arrow denotes the current location of the core; 
arrows on the streamlines denote the direction of flow. A slight lifting of the 
streamlines near r = 0 .7  may be observed in figure 19(a )  and near this location 
separation occurs at t = 1.428 in the form of a recirculating secondary eddy which 
is attached to the wall. The separated region may be observed in figure 19(b) at 
t = 1.5. As time increases the separated eddy develops rapidly, growing in a direction 
normal to the wall, as illustrated in figures 19(c) to 19(e) .  Note that as the primary 
vortex core continues to move radially outward, it is sweeping the secondary eddy 
outward along the wall. The situation at  t = 1.8 is depicted in figure 19(e) where i t  
may be seen that in addition to the rapid normal growth rate, the eddy is being 
progressively compressed in the streamwise direction. The relative closeness of the 
streamlines on the left-hand side of the eddy are an indication of the intense variations 
that are developing there. It may also be observed that the streamlines which 
approach the secondary eddy develop an increasing distension with time, as they are 
forced to climb over the expanding region of recirculating flow. At  this stage, 
significant upwelling is occurring on the left-hand side of the secondary eddy. 

To illustrate the boundary-layer growth, a displacement thickness may be defined 
according to 

(55) 

The temporal development of 6* is depicted in figure 20. It may be observed that 
the boundary layer is growing dramatically near the secondary eddy and the 
displacement thickness on the left-hand side is approaching the vertical. It is of 
interest to note that the boundary-layer growth is rather more dramatic than in the 
two-dimensional case considered by Walker (1978) ; as the ring moves toward 
the wall, vortex stretching leads to an increase in the local vorticity level and the 
separation process in the boundary layer intensifies. 

Despite the relatively small mesh sizes that were employed in the present study, 
it becomes progressively more difficult to extend the numerical integrations signifi- 

S* = 6 ( 1 - U )  dy . 
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cantly past the stage depicted in figure 19(e). Thus the alternative forward-back- 
ward differencing method described by Doligalski & Walker (1984) was also used in 
the present study. This scheme ultimately failed to converge as well at later times; 
streamline patterns in the terminal stages are depicted in figure 19(f). At the stage 
indicated in figure 19(f), the numerical solutions are of questionable accuracy, 
particularly on the left-hand side of the secondary eddy, and the results are suggestive 
of the early stages of the development of a singularity in the boundary-layer solution 
at finite time. Such a singularity is known to occur in two-dimensional unsteady 
boundary-layer flows (Van Dommelen & Shen 1980; see also Ece, Walker & Doligalski 
1984) and a similar behaviour is expected in this case as well. In  effect, the singularity 
develops because of the attempt in the present calculation method to impose the outer 
inviscid velocity distribution (due to the primary vortex) on the boundary-layer 
solution for an indefinite period of time. It is clear from figures 19(f) and 20 that 
the boundary-layer flow is rapidly evolving toward a viscous-inviscid interaction 
with the outer flow. Therefore at the stage indicated in figure 19 (f ), it is apparently 
necesmry to reformulate the problem and adopt a computational approach which 
permits a strong interaction between the boundary layer and the outer flow. To date 
the development of such an approach (other than full NavierStokes calculations at 
relatively low Reynolds numbers) has not been possible. However, the calculated 
results up to the stage of figure 19(f) are highly suggestive of a boundary-layer 
eruption and an ejection of the secondary eddy. This expectation has been verified 
by the experimental results discussed in 95. A detailed sequence of the process is 
illustrated in figure 21 which is a dual view visualization (using a surface dye sheet) 
of the response of the surface fluid to a vortex ring impact. Since the primary vortex 
ring was not visualized, the time origin in figure 21 was initiated arbitrarily (figure 
21a) with the appearance of a noticeable clear region within the dye sheet. The 
development of this clear region is the result of lateral spreading of the dyed surface 
fluid away from the axis of the impinging vortex. Note that the progressive 
development of a clear region is quite obvious in the top views of figures 21 (a)-21 (d), 
while the corresponding side-views reveal no evidence of such development. This is 
because the side-views actually were taken at a slight downward angle (2" to 3") to 
the plane of the plate and the dye sheet on the surface behind the point of interaction 
tends to obscure those motions which do not project significantly above the surface 
layer. Thus, figures 21 (a)-21 (d) indicate that, although the surface fluid is trans- 
ported laterally away from the axis of the impinging vortex ring, there is little 
movement of the fluid away from the surface. This is consistent with the predicted 
behaviour in figure 20, which indicates slow initial growth of the displacement 
thickness. In figure 21 (e), the first evidence of a boundary-layer eruption (labelled 
E in the figure) is detected visually. This eruption approximately corresponds to the 
onset of substantial boundary-layer growth, indicated at t x 1.9 in figure 20. Note 
that the initial eruption grows quite rapidly and culminates in the ejection of a 
secondary vortex, the visual manifestation of which is indicated by an S in figures 
21 (9) and 21 (h). The secondary vortex then interacts with the primary vortex and 
migrates toward the centre axis of the impinging vortex. This sequence shows clearly 
the initially slow boundary-layer development followed by the rapid eruption- 
ejection behaviour suggested by the numerical results. 

Lastly, it  is of interest to make a comparison between the separation time predicted 
by the theory and the experimental observations. The time to formation of the 
secondary vortex ring was measured relative to the instant when the primary vortex 
ring was one principal diameter away from the surface. The first occurrence of 



136 J .  D .  A .  Walker, C .  R. Smith, A .  W .  Cerra and T .  L. Doligalski 

FIGURE 21. Dual side-top view visualization of response of surface dye sheet to vortex ring impact. 
E, initial ejection of fluid from surface. S, secondary vortex formed from roll-up of ejected surface 
fluid. Picture time units are seconds. 

boundary-layer separation, in the form of a small attached eddy on the wall, is 
extremely difficult to  detect experimentally and this was not feasible with the present 
apparatus. (Note that the trajectory of the primary ring and the boundary-layer flow 
were not visualized simultaneously.) It was however possible to measure a time 
t,* corresponding to  the first indication of the presence of a secondary vortex. This 
was designated as the time when the dyed primary vortex was first deformed such 
that a noticeable concavity appeared in its outer surface. This type of measurement 
is somewhat sensitive to  the subjective interpretation of the observer. As an example 
of the degree of primary vortex deformation that was required to indicate conclusive 
evidence of the presence of the secondary vortex, the measured formation time t,* for 
the sequence shown in figure 9 was determined to occur between the second and third 
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FIGURE 22. Dimensionless time of observation of the secondary vortex, T, = t, V, = / D o  us. 
ReynoldsnumberRe,. V, D ,  = 0.95 cm; A, D ,  = 1.4 cm; 0, D,  = 1.9 cm; 0, D, = 2.2 cm; 0,  
D ,  = 2.5 cm; 0 ,  D ,  = 3.2 cm. Solid symbols represent very weak vortices and indicate data based 
on very subjective observations 

photographs in the first row. The normalized time to secondary vortex formation was 
defined as 

- 1, V, 
T , = - ,  

DO 

where V, and Do are the initial velocity and diameter of the primary vortex ring. A 
plot of experimentally determined T,  versus Re, (the initial Reynolds number defined 
in (33)), is shown in figure 22 for 72 separate cases. It may be observed that F, appears 
to change very slightly, if at all, with Re,. At the lower Reynolds numbers, there is 
an apparently larger variation in T,, which is due to both the uncertainty in the 
measurements and the degree of subjectivity in establishing the first appearance of 
the secondary vortex. A lower initial Reynolds number is indicative of a weaker 
primary vortex and thus a correspondingly weaker secondary vortex; a weaker 
secondary vortex results in a smaller deformation in the primary vortex and makes 
the determination of Ts more uncertain. To indicate the high degree of uncertainty 
of some of the measurements at lower Reynolds numbers the corresponding data 
symbols have been filled in on figure 22. The average value of F, measurements is 
1.3 with a standard deviation of 0.3. 

The numerical calculation was started at  frame 513 of the sequence depicted in 
figure 3, for which Do = 1.18 cm, &, = 1.18 cm, L = 1.32 cm, V, = 6.48 cm/s and 
Re, = 727; the value estimated for circulation by the method discussed in $6 was 
r = 17.5 cm2/s. The dimensionless time t,  computed in the numerical solution until 
separation first occurs was t, = 1.428 and a dimensionless time T, may be defined 
according to 

The theoretical computed value from (57) is T, = 0.78. This value is generally 
consistent with a value of the parameter T, = 1.25 obtained for the same set vortex 
parameters as well as the average value of = 1.3 obtained as an average of all 
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experiments. The parameter T,  measures the time to onset of separation, while is 
a measure of the time required for the separation to have a noticeable effect on the 
primary vortex. Thus it is expected that T,  should have a lower value than z, since 
there must be a lag between the point of initial eddy formation and the point when 
the eddy has grown to sufficient strength and size to produce an observable effect 
on the primary ring. An estimate of the order of magnitude of this lag may be obtained 
from figure 20; the At corresponding to the time from separation ( t  = 1.428) until the 
displacement thickness has achieved relatively large values a t  t = 1.9 is AT = 0.472. 
This interval, in terms of the same measure as q, is AT = AtL2&/(DOr)  = 0.26. 
Consequently with T, + AT = 1.04, it  is apparent from figure 22 that the comparison 
between the experiments and the theoretical predictions is encouraging. 

9. Conclusions 
The motion of a circular laminar vortex ring which moves on a trajectory normal 

and toward a plane wall has been investigated in this study. The experimental and 
theoretical results show that as the ring approaches the wall within a distance 
comparable to its diameter, an important unsteady boundary-layer effect begins to 
develop and strengthen on the wall. Boundary-layer separation occurs in the form 
of a secondary eddy attached to the wall in a ring which is located a t  radial distances 
greater than the radius of the primary ring. As the primary ring continues to  move 
toward the wall, its rate of approach slows and its radius continues to increase; a t  
the same time, the separated secondary ring in the boundary layer develops rapidly, 
and explosive boundary-layer growth begins to occur a t  radial locations near the 
inside edge of the secondary eddy. A viscous-inviscid interaction soon occurs between 
the outer flow and the thickening boundary layer; in this interaction the secondary 
eddy detaches from the wall and is ejected from the boundary layer as a secondary 
vortex ring. The secondary ring then interacts with the primary ring to arrest its 
radially outward motion and cause the primary ring to rebound from the wall. I n  
most cases, the primary ring is then observed to  induce a tertiary ring in the boundary 
layer, and a t  the higher Reynolds numbers a second eruption of the boundary-layer 
flow. The net effect is to  completely arrest the motion of the primary vortex toward 
the wall and to either stop or reverse the radial expansion of the primary ring. 

The experiments were carried out with stable laminar primary vortex rings. After 
the secondary ring was ejected from the boundary layer, wavelike instabilities were 
observed to occur and the flow field began to degenerate progressively into smaller 
scale three-dimensional motions. This process is complicated and Reynolds-number 
dependent; it has been documented in detail elsewhere (Cerra & Smith 1983). 
However the end result is an apparently chaotic flow which appears to be turbulent ; 
a similar phenomenon has recently been observed by Didden & Ho (1985) who have 
investigated the boundary-layer response to a forced air jet impinging normally on 
a plane wall. The periodic forcing of the air jet results in a series of vortex rings which 
are convected toward the wall on the perimeter of the jet. The vortices were observed 
to induce secondary vortices in the unsteady boundary layer on the wall ; after several 
eruptions were observed, the boundary-layer flow, in a direction away from the point 
of impingement, soon develops into an apparently chaotic and turbulent state. 

The present study is fundamental, but of interest in the sense that i t  clearly shows 
how the motion of one vortex can lead to  the production of other vortices near a wall. 
It also clearly demonstrates a basic physical effect wherein initial vorticity in a flow 
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can lead to the introduction of new vorticity from the wall region via an intermittent 
and abrupt eruption of the viscous flow near the wall. The similarity to some of the 
characteristics of bursting in a turbulent boundary layer should be noted (Walker, 
Scharnhorst & Weigand 1986). However it should also be pointed out that the vortex 
configurations in a turbulent boundary layer are believed to be more complicated 
than the ring vortices considered here; such vortices are probably of the hairpin type 
(Acarlar L Smith l984,1987a, b). The nature of the unsteady flow induced at  a wall 
by moving hairpins is a complex problem which must await further research. 

The authors are grateful for support of this work by the Air Force Office of Scientific 
Research under Contract Numbers F49620-78-C-0071 and F49620-81-K-0033, 
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